Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Brain Cogn ; 177: 106160, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670051

ABSTRACT

While procedural learning (PL) has been implicated in delayed motor skill observed in developmental coordination disorder (DCD), few studies have considered the impact of co-occurring attentional problems. Furthermore, the neurostructural basis of PL in children remains unclear. We investigated PL in children with DCD while controlling for inattention symptoms, and examined the role of fronto-basal ganglia-cerebellar morphology in PL. Fifty-nine children (6-14 years; nDCD = 19, ncontrol = 40) completed the serial reaction time (SRT) task to measure PL. The Attention-Deficit Hyperactivity Disorder Rating Scale-IV was administered to measure inattention symptoms. Structural T1 images were acquired for a subset of participants (nDCD = 10, ncontrol = 28), and processed using FreeSurfer. Volume was extracted for the cerebellum, basal ganglia, and frontal regions. After controlling for inattention symptoms, the reaction time profile of controls was consistent with learning on the SRT task. This was not the case for those with DCD. SRT task performance was positively correlated with cerebellar cortical volume, and children with DCD trended towards lower cerebellar volume compared to controls. Children with DCD may not engage in PL during the SRT task in the same manner as controls, with this differential performance being associated with atypical cerebellar morphology.

2.
Biol Psychiatry Glob Open Sci ; 4(1): 385-393, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38298776

ABSTRACT

Background: During childhood and adolescence, attention-deficit/hyperactivity disorder (ADHD) is associated with changes in symptoms and brain structures, but the link between brain structure and function remains unclear. The limbic system, often termed the "emotional network," plays an important role in a number of neurodevelopmental disorders, yet this brain network remains largely unexplored in ADHD. Investigating the developmental trajectories of key limbic system structures during childhood and adolescence will provide novel insights into the neurobiological underpinnings of ADHD. Methods: Structural magnetic resonance imaging data (380 scans), emotional regulation (Affective Reactivity Index), and ADHD symptom severity (Conners 3 ADHD Index) were measured at up to 3 time points between 9 and 14 years of age in a sample of children and adolescents with ADHD (n = 57) and control children (n = 109). Results: Compared with the control group, the ADHD group had lower volume of the amygdala (left: ß standardized [ß_std] = -0.38; right: ß_std = -0.34), hippocampus (left: ß_std = -0.44; right: ß_std = -0.34), cingulate gyrus (left: ß_std = -0.42; right: ß_std = -0.32), and orbitofrontal cortex (right: ß_std = -0.33) across development (9-14 years). There were no significant group-by-age interactions in any of the limbic system structures. Exploratory analysis found a significant Conners 3 ADHD Index-by-age interaction effect on the volume of the left mammillary body (ß_std = 0.17) in the ADHD group across the 3 study time points. Conclusions: Children and adolescents with ADHD displayed lower volume and atypical development in limbic system structures. Furthermore, atypical limbic system development was associated with increased symptom severity, highlighting a potential neurobiological correlate of ADHD severity.

3.
J Int Neuropsychol Soc ; 30(3): 264-272, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37667614

ABSTRACT

OBJECTIVE: To model cognitive reserve (CR) longitudinally in a neurodiverse pediatric sample using a residual index approach, and to test the criterion and construct validity of this index. METHOD: Participants were N = 115 children aged 9.5-13 years at baseline (MAge = 10.48 years, SDAge = 0.61), and n = 43 (37.4%) met criteria for ADHD. The CR index represented variance in Matrix Reasoning scores from the WASI that was unexplained by MRI-based brain variables (bilateral hippocampal volumes, total gray matter volumes, and total white matter hypointensity volumes) or demographics (age and sex). RESULTS: At baseline, the CR index predicted math computation ability (estimate = 0.50, SE = 0.07, p < .001), and word reading ability (estimate = 0.26, SE = 0.10, p = .012). Longitudinally, change in CR over time was not associated with change in math computation ability (estimate = -0.02, SE = 0.03, p < .513), but did predict change in word reading ability (estimate = 0.10, SE = 0.03, p < .001). Change in CR was also found to moderate the relationship between change in word reading ability and white matter hypointensity volume (estimate = 0.10, SE = 0.05, p = .045). CONCLUSIONS: Evidence for the criterion validity of this CR index is encouraging, but somewhat mixed, while construct validity was evidenced through interaction between CR, brain, and word reading ability. Future research would benefit from optimization of the CR index through careful selection of brain variables for a pediatric sample.


Subject(s)
Cognitive Reserve , White Matter , Humans , Child , Brain/diagnostic imaging , Cognition , White Matter/diagnostic imaging , Cerebral Cortex , Magnetic Resonance Imaging
4.
J Adolesc Health ; 74(4): 674-681, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37665306

ABSTRACT

PURPOSE: Earlier pubertal timing is an important predictor of emotional and behavioral problems during adolescence. The current study undertook a comprehensive investigation of whether the social environment can buffer or amplify the associations between pubertal timing and emotional and behavioral problems. METHODS: Research questions were examined in the Adolescent Brain Cognitive Development (ABCD) Study, a large population representative sample in the United States. We examined interactions between pubertal timing and the shared effects of a range of proximal and distal social environmental influences (i.e., parents, peers, schools, neighborhoods, socioeconomic status) in 10- to 13-year-olds. RESULTS: Results revealed significant interaction between timing and proximal social influences (i.e., the "microsystem") in predicting emotional and behavioral problems. In general, adolescents with earlier pubertal timing and unfavorable (high levels of negative and low levels of positive) influences in the microsystem exhibited greater problems. Both males and females exhibited such associations for rule-breaking problems, while females alone exhibited associations for depressive problems. Results also illustrate the relative strength of each social context at moderating risk for emotional and behavioral problems in earlier versus later pubertal maturers. DISCUSSION: These findings highlight the importance of proximal social influences in buffering vulnerability for emotional and behavioral problems related to earlier puberty. Findings also illustrate the broad implications of latent environmental factors, reflecting common variance of multiple social influences that typically covary with one another.


Subject(s)
Problem Behavior , Male , Female , Humans , Adolescent , Puberty/psychology , Social Determinants of Health , Emotions , Adolescent Development
5.
Brain Struct Funct ; 229(1): 151-159, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37982844

ABSTRACT

Myelination of human brain white matter (WM) continues into adulthood following birth, facilitating connection within and between brain networks. In vivo MRI studies using diffusion weighted imaging (DWI) suggest microstructural properties of brain WM increase over childhood and adolescence. Although DWI metrics, such as fractional anisotropy (FA), could reflect axonal myelination, they are not specific to myelin and could also represent other elements of WM microstructure, for example, fibre architecture, axon diameter and cell swelling. Little work exists specifically examining myelin development. The T1w/T2w ratio approach offers an alternative non-invasive method of estimating brain myelin. The approach uses MRI scans that are routinely part of clinical imaging and only require short acquisition times. Using T1w/T2w ratio maps from three waves of the Neuroimaging of the Children's Attention Project (NICAP) [N = 95 (208 scans); 44% female; ages 9.5-14.20 years] we aimed to investigate the developmental trajectories of brain white matter myelin in children as they enter adolescence. We also aimed to investigate whether longitudinal changes in myelination of brain WM differs between biological sex. Longitudinal regression modelling suggested non-linear increases in WM myelin brain wide. A positive parabolic, or U-shaped developmental trajectory was seen across 69 of 71 WM tracts modelled. At a corrected level, no significant effect for sex was found. These findings build on previous brain development research by suggesting that increases in brain WM microstructure from childhood to adolescence could be attributed to increases in myelin.


Subject(s)
White Matter , Adolescent , Humans , Child , Female , Male , White Matter/diagnostic imaging , Myelin Sheath , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging
6.
Mol Psychiatry ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052980

ABSTRACT

Puberty is linked to mental health problems during adolescence, and in particular, the timing of puberty is thought to be an important risk factor. This study developed a new measure of pubertal timing that was built upon multiple pubertal features and their nonlinear changes over time (i.e., with age), and investigated its association with mental health problems. Using the Adolescent Brain Cognitive Development (ABCD) cohort (N ~ 9900, aged 9-13 years), we employed three different models to assess pubertal timing. These models aimed to predict chronological age based on: (i) observed physical development, (ii) hormone levels (testosterone and dehydroepiandrosterone [DHEA]), and (iii) a combination of both physical development and hormones. To achieve this, we utilized a supervised machine learning approach, which allowed us to train the models using the available data and make age predictions based on the input pubertal features. The accuracy of these three models was evaluated, and their associations with mental health problems were examined. The new pubertal timing model performed better at capturing age variance compared to the more commonly used linear regression method. Further, the model based on physical features accounted for the most variance in mental health, such that earlier pubertal timing was associated with higher symptoms. This study demonstrates the utility of our new model of pubertal timing and suggests that, relative to hormonal measures, physical measures of pubertal maturation have a stronger association with mental health problems in early adolescence.

7.
Cortex ; 166: 243-257, 2023 09.
Article in English | MEDLINE | ID: mdl-37406409

ABSTRACT

INTRODUCTION: Attention Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder with many functional impairments thought to be underpinned by difficulties in executive function domains such as working memory. The superior longitudinal fasciculus (SLF) plays an integral role in the development of working memory in neurotypical children. Neuroimaging research suggests reduced white matter organization of the SLF may contribute to working memory difficulties commonly seen in ADHD. This study aimed to examine the relationship between white matter organization of the SLF and working memory in children with ADHD. METHODS: We examined the association of tract volume and apparent fibre density (AFD) of the SLF with working memory in children with ADHD (n = 64) and controls (n = 58) aged 9-11years. Children completed a computerized spatial n-back task and underwent diffusion magnetic resonance imaging (dMRI). Constrained spherical deconvolution-based tractography was used to construct the three branches of the SLF bilaterally and examine volume and AFD of the SLF. RESULTS: Regression analyses revealed children with ADHD exhibited poorer working memory, and lower volume and AFD of the left SLF-II compared to healthy controls. There was also an association between reaction time and variability (RT and RT-V) and the left SLF-II. Further analyses revealed volume of the left SLF-II mediated the relationship between ADHD and working memory performance (RT and RT-V). DISCUSSION: These findings add to the current body of ADHD literature, revealing the potential role of frontoparietal white matter in working memory difficulties in ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , White Matter , Humans , Child , White Matter/pathology , Memory, Short-Term , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Cognition , Memory Disorders
8.
Transl Psychiatry ; 13(1): 252, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37433763

ABSTRACT

Functional connectivity is scaffolded by the structural connections of the brain. Disruptions of either structural or functional connectivity can lead to deficits in cognitive functions and increase the risk for neurodevelopmental disorders such as attention deficit hyperactivity disorder (ADHD). To date, very little research has examined the association between structural and functional connectivity in typical development, while no studies have attempted to understand the development of structure-function coupling in children with ADHD. 175 individuals (84 typically developing children and 91 children with ADHD) participated in a longitudinal neuroimaging study with up to three waves. In total, we collected 278 observations between the ages 9 and 14 (139 each in typically developing controls and ADHD). Regional measures of structure-function coupling were calculated at each timepoint using Spearman's rank correlation and mixed effect models were used to determine group differences and longitudinal changes in coupling over time. In typically developing children, we observed increases in structure-function coupling strength across multiple higher-order cognitive and sensory regions. Overall, weaker coupling was observed in children with ADHD, mainly in the prefrontal cortex, superior temporal gyrus, and inferior parietal cortex. Further, children with ADHD showed an increased rate of coupling strength predominantly in the inferior frontal gyrus, superior parietal cortex, precuneus, mid-cingulate, and visual cortex, compared to no corresponding change over time in typically developing controls. This study provides evidence of the joint maturation of structural and functional brain connections in typical development across late childhood to mid-adolescence, particularly in regions that support cognitive maturation. Findings also suggest that children with ADHD exhibit different patterns of structure-function coupling, suggesting atypical patterns of coordinated white matter and functional connectivity development predominantly in the regions overlapping with the default mode network, salience network, and dorsal attention network during late childhood to mid-adolescence.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Neurodevelopmental Disorders , Child , Adolescent , Humans , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Brain/diagnostic imaging , Cognition , Neuroimaging
9.
Psychol Med ; 53(16): 7655-7665, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37264939

ABSTRACT

BACKGROUND: Undergoing puberty ahead of peers ('earlier pubertal timing') is an important risk factor for mental health problems during early adolescence. The current study examined pathways between pubertal timing and mental health via connectivity of neural systems implicated in emotional reactivity and regulation (specifically corticolimbic connections) in 9- to 14-year-olds. METHOD: Research questions were examined in the Adolescent Brain Cognitive Development (ABCD) Study, a large population representative sample in the United States. Linear mixed models examined associations between pubertal timing and resting-state corticolimbic connectivity. Significant connections were examined as potential mediators of the relationship between pubertal timing and mental health (withdrawn depressed and rule-breaking) problems. Exploratory analyses interrogated whether the family environment moderated neural risk patterns in those undergoing puberty earlier than their peers. RESULTS: Earlier pubertal timing was related to decreased connectivity between limbic structures (bilateral amygdala and right hippocampus) and the cingulo-opercular network, left amygdala and somatomotor (mouth) network, as well as between the left hippocampus and ventral attention network and visual network. Corticolimbic connections also mediated the relationship between earlier pubertal timing and increased withdrawn depressed problems (but not rule-breaking problems). Finally, parental acceptance buffered against connectivity patterns that were implicated in withdrawn depressed problems in those undergoing puberty earlier than their peers. CONCLUSION: Findings highlight the role of decreased corticolimbic connectivity in mediating pathways between earlier pubertal timing and withdrawn depressed problems, and we present preliminary evidence that the family environment may buffer against these neural risk patterns during early adolescence.


Subject(s)
Brain , Mental Health , Adolescent , Humans , Puberty/psychology , Amygdala/diagnostic imaging , Risk Factors
10.
Brain Commun ; 5(3): fcad105, 2023.
Article in English | MEDLINE | ID: mdl-37215485

ABSTRACT

Tics are sudden stereotyped movements or vocalizations. Cases of lesion-induced tics are invaluable, allowing for causal links between symptoms and brain structures. While a lesion network for tics has recently been identified, the degree to which this network translates to Tourette syndrome has not been fully elucidated. This is important given that patients with Tourette syndrome make up a large portion of tic cases; therefore, existing and future treatments should apply to these patients. The aim of this study was to first localize a causal network for tics from lesion-induced cases and then refine and validate this network in patients with Tourette syndrome. We independently performed 'lesion network mapping' using a large normative functional connectome (n = 1000) to isolate a brain network commonly connected to lesions causing tics (n = 19) identified through a systematic search. The specificity of this network to tics was assessed through comparison to lesions causing other movement disorders. Using structural brain coordinates from prior neuroimaging studies (n = 7), we then derived a neural network for Tourette syndrome. This was done using standard anatomical likelihood estimation meta-analysis and a novel method termed 'coordinate network mapping', which uses the same coordinates, yet maps their connectivity using the aforementioned functional connectome. Conjunction analysis was used to refine the network for lesion-induced tics to Tourette syndrome by identifying regions common to both lesion and structural networks. We then tested whether connectivity from this common network is abnormal in a separate resting-state functional connectivity MRI data set from idiopathic Tourette syndrome patients (n = 21) and healthy controls (n = 25). Results showed that lesions causing tics were distributed throughout the brain; however, consistent with a recent study, these were part of a common network with predominant basal ganglia connectivity. Using conjunction analysis, coordinate network mapping findings refined the lesion network to the posterior putamen, caudate nucleus, globus pallidus externus (positive connectivity) and precuneus (negative connectivity). Functional connectivity from this positive network to frontal and cingulate regions was abnormal in patients with idiopathic Tourette syndrome. These findings identify a network derived from lesion-induced and idiopathic data, providing insight into the pathophysiology of tics in Tourette syndrome. Connectivity to our cortical cluster in the precuneus offers an exciting opportunity for non-invasive brain stimulation protocols.

11.
Article in English | MEDLINE | ID: mdl-36963498

ABSTRACT

BACKGROUND: Few longitudinal studies have investigated whether white matter development reflects differential outcomes for children with and without attention-deficit/hyperactivity disorder (ADHD). To examine whether deviations from typical trajectories of white matter development were associated with the persistence or remission of ADHD symptoms, this study examined microstructural and morphological properties of 71 white matter tracts from 390 high angular diffusion scans acquired prospectively for 62 children with persistent ADHD, 37 children remitted from ADHD, and 85 children without ADHD. METHODS: Participants (mean age at wave 1 = 10.39 years, scan interval = 18 months) underwent up to 3 magnetic resonance imaging assessments. White matter tracts were reconstructed using TractSeg, a semiautomated method. For each tract, we derived measures of fiber density (microstructure) and fiber bundle cross-section (morphology) using fixel-based analysis. Linear mixed models were used to compare trajectories of fiber development between the persistent ADHD, remitted ADHD, and non-ADHD groups. RESULTS: Compared with the non-ADHD group, the remitted and persistent ADHD groups showed accelerated fiber development in thalamic pathways, striatal pathways, and the superior longitudinal fasciculus. In the remitted ADHD group, accelerated fiber development in corticospinal, frontopontine, striatal-premotor, and thalamo-premotor pathways was associated with greater reductions in ADHD symptom severity. The persistent ADHD group showed ongoing white matter alterations along sensorimotor pathways. CONCLUSIONS: These results suggest that variations in white matter development are associated with different clinical trajectories in ADHD. The findings advance our understanding of the neurobiological mechanisms underpinning ADHD symptom progression and provide novel evidence in support of developmental models of ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , White Matter , Child , Humans , Attention Deficit Disorder with Hyperactivity/diagnosis , Magnetic Resonance Imaging , Attention , Nerve Net
12.
Hum Brain Mapp ; 44(8): 3394-3409, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36988503

ABSTRACT

Attention deficit hyperactivity disorder (ADHD) is a prevalent childhood neurodevelopmental disorder. Given the profound brain changes that occur during childhood and adolescence, it is important to examine longitudinal changes of both functional and structural brain connectivity across development in ADHD. This study aimed to examine the development of functional and structural connectivity in children with ADHD compared to controls using graph metrics. One hundred and seventy five individuals (91 children with ADHD and 84 non-ADHD controls) participated in a longitudinal neuroimaging study with up to three waves. Graph metrics were derived from 370 resting state fMRI (197 Control, 173 ADHD) and 297 diffusion weighted imaging data (152 Control, 145 ADHD) acquired between the ages of 9 and 14. For functional connectivity, children with ADHD (compared to typically developing children) showed lower degree, local efficiency and betweenness centrality predominantly in parietal, temporal and visual cortices and higher degree, local efficiency and betweenness centrality in frontal, parietal, and temporal cortices. For structural connectivity, children with ADHD had lower local efficiency in parietal and temporal cortices and, higher degree and betweenness centrality in frontal, parietal and temporal cortices. Further, differential developmental trajectories of functional and structural connectivity for graph measures were observed in higher-order cognitive and sensory regions. Our findings show that topology of functional and structural connectomes matures differently between typically developing controls and children with ADHD during childhood and adolescence. Specifically, functional and structural neural circuits associated with sensory and various higher order cognitive functions are altered in children with ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Connectome , Adolescent , Humans , Child , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Connectome/methods , Cognition , Brain Mapping , Neural Pathways/diagnostic imaging
13.
Dev Cogn Neurosci ; 60: 101227, 2023 04.
Article in English | MEDLINE | ID: mdl-36933272

ABSTRACT

BACKGROUND: Our understanding of the mechanisms relating pubertal timing to mental health problems via brain development remains rudimentary. METHOD: Longitudinal data was sourced from ∼11,500 children from the Adolescent Brain Cognitive Development (ABCD) Study (age 9-13years). We built models of "brain age" and "puberty age" as indices of brain and pubertal development. Residuals from these models were used to index individual differences in brain development and pubertal timing, respectively. Mixed-effects models were used to investigate associations between pubertal timing and regional and global brain development. Mediation models were used to investigate the indirect effect of pubertal timing on mental health problems via brain development. RESULTS: Earlier pubertal timing was associated with accelerated brain development, particularly of subcortical and frontal regions in females and subcortical regions in males. While earlier pubertal timing was associated with elevated mental health problems in both sexes, brain age did not predict mental health problems, nor did it mediate associations between pubertal timing and mental health problems. CONCLUSION: This study highlights the importance of pubertal timing as a marker associated with brain maturation and mental health problems.


Subject(s)
Mental Health , Puberty , Male , Female , Child , Adolescent , Humans , Sexual Behavior , Brain
14.
Article in English | MEDLINE | ID: mdl-36717325

ABSTRACT

BACKGROUND: Methylphenidate, a first-line treatment for attention-deficit/hyperactivity disorder (ADHD), is thought to influence dopaminergic neurotransmission in the nucleus accumbens (NAc) and its associated brain circuitry, but this hypothesis has yet to be systematically tested. METHODS: We conducted a randomized, placebo-controlled, double-blind crossover trial including 27 children with ADHD. Children with ADHD were scanned twice with resting-state functional magnetic resonance imaging under methylphenidate and placebo conditions, along with assessment of sustained attention. We examined spontaneous neural activity in the NAc and the salience, frontoparietal, and default mode networks and their links to behavioral changes. Replicability of methylphenidate effects on spontaneous neural activity was examined in a second independent cohort. RESULTS: Methylphenidate increased spontaneous neural activity in the NAc and the salience and default mode networks. Methylphenidate-induced changes in spontaneous activity patterns in the default mode network were associated with improvements in intraindividual response variability during a sustained attention task. Critically, despite differences in clinical trial protocols and data acquisition parameters, the NAc and the salience and default mode networks showed replicable patterns of methylphenidate-induced changes in spontaneous activity across two independent cohorts. CONCLUSIONS: We provide reproducible evidence demonstrating that methylphenidate enhances spontaneous neural activity in NAc and cognitive control networks in children with ADHD, resulting in more stable sustained attention. Our findings identified a novel neural mechanism underlying methylphenidate treatment in ADHD to inform the development of clinically useful biomarkers for evaluating treatment outcomes.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Methylphenidate , Humans , Child , Methylphenidate/pharmacology , Methylphenidate/therapeutic use , Brain , Reward , Cognition
15.
Cerebellum ; 22(6): 1243-1249, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36482028

ABSTRACT

Alterations in cerebellar morphology relative to controls have been identified in children with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and developmental coordination disorder (DCD). However, it is not clear if common cerebellar regions are affected in each neurodevelopmental disorder and whether cerebellar morphological changes reflect a generic developmental vulnerability, or disorder-specific characteristic. The present study concatenated anatomical MRI scans from five existing cohorts, resulting in data from 252 children between the age of 7 and 12 years (ASD = 58, ADHD = 86, DCD = 22, Controls = 86). The ACAPULCO processing pipeline for cerebellar segmentation was conducted on T1-weighted images. A voxel-wise approach with general linear model was used to compare grey-matter volume of the 27 cerebellar lobules between each clinical group and controls. Our findings revealed that the ADHD group showed lower grey-matter volume in the left Crus I - part of the executive/non-motor portion of the cerebellum, relative to controls (p = 0.02). This no longer remained significant after controlling for medication status. There were no regions of significant differences in volume of the cerebellar lobules in ASD or DCD compared to controls. Future work will conduct harmonisation of behavioural data (cognitive and motor outcomes) across cohorts, enabling more advanced analyses to identify symptom cluster across neurodevelopmental disorders.


Subject(s)
Autism Spectrum Disorder , Humans , Child , Autism Spectrum Disorder/diagnostic imaging , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging , Cerebellum/diagnostic imaging , Cerebral Cortex
16.
Article in English | MEDLINE | ID: mdl-35033687

ABSTRACT

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a prevalent childhood neurodevelopmental disorder. Given the profound brain changes that occur across childhood and adolescence, it is important to identify functional networks that exhibit differential developmental patterns in children with ADHD. This study sought to examine whether children with ADHD exhibit differential developmental trajectories in functional connectivity compared with typically developing children using a network-based approach. METHODS: This longitudinal neuroimaging study included 175 participants (91 children with ADHD and 84 control children without ADHD) between ages 9 and 14 and up to 3 waves (173 total resting-state scans in children with ADHD and 197 scans in control children). We adopted network-based statistics to identify connected components with trajectories of development that differed between groups. RESULTS: Children with ADHD exhibited differential developmental trajectories compared with typically developing control children in networks connecting cortical and limbic regions as well as between visual and higher-order cognitive regions. A pattern of reduction in functional connectivity between corticolimbic networks was seen across development in the control group that was not present in the ADHD group. Conversely, the ADHD group showed a significant decrease in connectivity between predominantly visual and higher-order cognitive networks that was not displayed in the control group. CONCLUSIONS: Our findings show that the developmental trajectories in children with ADHD are characterized by a subnetwork involving different trajectories predominantly between corticolimbic regions and between visual and higher-order cognitive network connections. These findings highlight the importance of examining the longitudinal maturational course to understand the development of functional connectivity networks in children with ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Connectome , Adolescent , Humans , Child , Magnetic Resonance Imaging/methods , Brain , Connectome/methods , Neuroimaging
17.
Dev Cogn Neurosci ; 58: 101171, 2022 12.
Article in English | MEDLINE | ID: mdl-36372005

ABSTRACT

Response inhibition refers to the cancelling of planned (or restraining of ongoing) actions and is required in much of our everyday life. Response inhibition appears to improve dramatically in early development and plateau in adolescence. The fronto-basal-ganglia network has long been shown to predict individual differences in the ability to enact response inhibition. In the current study, we examined whether developmental trajectories of fiber-specific white matter properties of the fronto-basal-ganglia network was predictive of parallel developmental trajectories of response inhibition. 138 children aged 9-14 completed the stop-signal task (SST). A subsample of 73 children underwent high-angular resolution diffusion MRI data for up to three time points. Performance on the SST was assessed using a parametric race modelling approach. White matter organization of the fronto-basal-ganglia circuit was estimated using fixel-based analysis. Contrary to predictions, we did not find any significant associations between maturational trajectories of fronto-basal-ganglia white matter and developmental improvements in SST performance. Findings suggest that the development of white matter organization of the fronto-basal-ganglia and development of stopping performance follow distinct maturational trajectories.


Subject(s)
White Matter , Adolescent , Child , Humans , Inhibition, Psychological , Basal Ganglia/physiology , Task Performance and Analysis , Ganglia
18.
Cortex ; 157: 129-141, 2022 12.
Article in English | MEDLINE | ID: mdl-36283135

ABSTRACT

Sustained attention is a cognitive function with known links to academic success and mental health disorders such as attention/deficit-hyperactivity disorder (ADHD). Several functional networks are critical to sustained attention, however the association between white matter maturation in tracts linking functional nodes and sustained attention in typical and atypical development is unknown. 309 diffusion-weighted imaging scans were acquired from 161 children and adolescents (80 ADHD, 81 control) at up to three timepoints over ages 9-14. A fixel-based analysis approach was used to calculate mean fiber density and fiber-bundle cross section in tracts of interest. Sustained attention was measured using omission errors and response time variability on the out-of-scanner sustained attention to response task. Linear mixed effects models examined associations of age, group and white matter metrics with sustained attention. Greater fiber density in the bilateral superior longitudinal fasciculus (SLF) I and right SLF II was associated with fewer attention errors in the control group only. In ADHD and control groups, greater fiber density in the left ILF and right thalamo-premotor pathway, as well as greater fiber cross-section in the left SLF I and II and right SLF III, was associated with better sustained attention. Relationships were consistent across the age span. Results suggest that greater axon diameter or number in the dorsal and middle SLF may facilitate sustained attention in neurotypical children but does not assist those with ADHD potentially due to disorder-related alterations in this region. Greater capacity for information transfer across the SLF was associated with attention maintenance in 9-14-year-olds regardless of diagnostic status, suggesting white matter macrostructure may also be important for attention maintenance. White matter and sustained attention associations were consistent across the longitudinal study, according with the stability of structural organization over this time. Future studies can investigate modifiability of white matter properties through ADHD medications.


Subject(s)
Attention Deficit Disorder with Hyperactivity , White Matter , Child , Adolescent , Humans , White Matter/diagnostic imaging , Longitudinal Studies , Nerve Net , Diffusion Magnetic Resonance Imaging
19.
Cogn Affect Behav Neurosci ; 22(6): 1432-1446, 2022 12.
Article in English | MEDLINE | ID: mdl-35676491

ABSTRACT

The transition from childhood to adolescence involves important neural function, cognition, and behavior changes. However, the links between maturing brain function and sustained attention over this period could be better understood. This study examined typical changes in network functional connectivity over childhood to adolescence, developmental differences in attention deficit/hyperactivity disorder (ADHD), and how functional connectivity might underpin variability in sustained attention development in a longitudinal sample. A total of 398 resting state scans were collected from 173 children and adolescents (88 ADHD, 85 control) at up to three timepoints across ages 9-14 years. The effects of age, sex, and diagnostic group on changes in network functional connectivity were assessed, followed by relationships between functional connectivity and sustained attention development using linear mixed effects modelling. The ADHD group displayed greater decreases in functional connectivity between salience and visual networks compared with controls. Lower childhood functional connectivity between the frontoparietal and several brain networks was associated with more rapid sustained attention development, whereas frontoparietal to dorsal attention network connectivity related to attention trajectories in children with ADHD alone. Brain network segregation may increase into adolescence as predicted by key developmental theories; however, participants with ADHD demonstrated altered developmental trajectories between salience and visual networks. The segregation of the frontoparietal network from other brain networks may be a mechanism supporting sustained attention development. Frontoparietal to dorsal attention connectivity can be a focus for further work in ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Child , Adolescent , Humans , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Brain Mapping , Rest , Neural Pathways/diagnostic imaging , Magnetic Resonance Imaging , Brain/diagnostic imaging
20.
Nutr Neurosci ; 25(11): 2269-2278, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34369315

ABSTRACT

BACKGROUND: Vigilant Attention (VA) is a critical cognitive function allowing to maintain our attention, particularly in redundant or intellectually unchallenging situations. Evidence has shown that, as the brain develops, VA abilities rapidly improve throughout childhood and adolescence. Dietary omega-3 polyunsaturated fats (PUFA), playing a critical role for proper brain development and maturation of cortical regions, may contribute to variations in VA abilities. OBJECTIVE: The present study investigated the effect of dietary omega-3 PUFA intake (docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)) on resting-state functional connectivity (rsFC) of a meta-analytically defined VA network in 24 neurotypical children and adolescents (7.3-17.2 years) from the Healthy Brain Network databank. METHODS: Functional MRI and phenotypical information were collected from the Healthy Brain Network databank. Intake of omega-3 DHA and EPA was assessed using a food frequency questionnaire and was adjusted for total calorie intake. Out of scanner VA-related performance was assessed using the VA condition of the Adaptive Cognitive Evaluation tool. RESULTS: Overall, reported intake of omega-3 PUFA was not significantly associated with VA-related performance. Furthermore, energy-adjusted omega-3 intake was not significantly correlated with rsFC within the VA network. A complementary whole-brain analysis revealed that energy-adjusted omega-3 intake was correlated with decreased rsFC between parieto-occipital brain regions. CONCLUSION: The present study was not able to detect a relationship between dietary omega-3 and rsFC or VA performance.


Subject(s)
Eicosapentaenoic Acid , Fatty Acids, Omega-3 , Child , Humans , Adolescent , Docosahexaenoic Acids , Diet , Attention
SELECTION OF CITATIONS
SEARCH DETAIL
...